Goals of HCC workshop

K. Yonehara APC, Fermilab

Proposed baseline 6D cooling section

- Need to demonstrate "end-to-end" cooling simulation to evaluate cooling performance
- This is NOT the final design
 - Select "primary" and "alternative" channels

Goal of the workshop

- Make a list of criteria for baseline selection
 - Find "strong points" and "challenges" in HCC
 - Distribute challenge issues in the group
- Organize group
- Schedule

Our "Strong points"

- HCC theory is very accurate
 - Estimate cooling performance from a lattice
 - Guide for optimization
 - Improved matching at RF frequency transition
 - Designed bunch merging by using features of helical magnet
- High Pressurized Hydrogen gas filled RF cavity
 - Feasible for a muon cooling channel
 - Gas-plasma dynamics is a key to have better cooling performance, i.e. a lower emittance than possible in a vacuum channel
- Developed a helical solenoid magnet technology
 - NbTi, YBCO
 - Consider BiSCCO in future

11/7/13

What is present "challenges"?

- Moving conceptual design to engineering design
 - How to incorporate an RF system into an HCC magnet?
 - A practical HCC design for $\lambda \ge 0.5$ m looks available
 - Find coil geometry, current (margin), and tolerance particularly for a final cooling section (λ < 0.5 m)
 - Find RF geometry, power, operating temperature (room vs. LN2 temp), thermal isolation, and tolerance
 - Additional space (> 15 %) for maintenance, plumbing, instrumentation, infrastructure
- Challenge of extrapolating to final system
 - What happens in the channel with a muon collider beam?
 - Beam loading, Plasma loading, Plasma interacting with beam
 - But, gas plasma could have a positive effect

Additional challenges

- Matching
 - How to match a front-end beam into an HCC?
- Safety aspect
 - What is a safety requirement for usage of pressurized hydrogen?
- Beam instrumentation
 - How to measure muon beam profile?
- Cryo-cooler for RF system?
 - Room temp. vs. LN2 temp.

Charge for baseline selection

- Accomplish end-to-end cooling simulation
 - Phase space matching from a charge separator to a helical channel
 - Verify HCC theory
 - Compare emittance evolution and transmission efficiency in analytical/practical EM fields
 - Test field tolerance
 - Provide lattice parameters
 - Bunch merging
- Design HCC magnet
 - Nb3Sn vs HTS for λ < 0.5 m
- Design HCC RF system
 - Investigate gas-plasma dynamics
 - Design RF for λ < 0.5 m

Organization chart

Original: 9/14/13 Modified: 11/07/13

Project Manager
K. Yonehara/G. Flanagan

6D simulation C. Yoshikawa

- K. Yonehara
- S. Kahn
- Y. Derbenev
- R. Johnson
- V. Morozov
- C. Ankenbrandt
- D. Neuffer

HCC magnet M. Lopes

- G. Flanagan
- J. Tompkins
- S. Kahn

HCC RF system F. Marhauser

- A. Tollestrup
- M. Chung
- B. Freemire
- K. Yoneahra
- R. Samulyak

Additional criteria for baseline selection

- RF must work in a multi-Tesla field
- RF must accept a muon collider beam
- What is the limit of cooling?
 - Space charge?
 - Beam loading?
 - Magnetic field?
 - RF gradient?
 - Non-linear dynamics?
 - Acceleration?

Consider possible extension

- This is NOT the final design
- In fact, the present front-end is not ideal for both a vacuum and a HPRF base cooling channel

Improve MC complex I: Front-end

- Optimize front-end channel
 - Use a snake FOFO or COBRA as a precooler in front of the charge separator

Improve MC complex II: Bunch merging

- Do we need a bunch merging here?
 - Can we merge a bunched beam at high energy?
 - Need to consider space charge effect in an extra cooling channel
 - Gas-plasma may be able to neutralize beam charge
 - Need to design a bunch coalescing ring